THERMOLYSIS OF COMPLEX CYANIDES, XV.*

DECOMPOSITION OF [Fe(CN)₄BIPY]ⁿ⁻ AND [Fe(CN)₄PHEN]ⁿ⁻ COMPLEXES

A. HORVÁTH, B. MOHAI and F. MIKO

Department of General and Inorganic Chemistry, University of Industrial Chemistry, Veszprém Hungary

(Received May 7, 1979)

The thermal decompositions of $K_2[Fe(CN)_4L] \cdot 4H_2O$, $H_2[Fe(CN)_4L]$ and $H[Fe(CN) L] (L = 1,1'-bipyridine, of 1,10-phenanthroline) were studied. The experimental results showed that the protonated ferrous complexes decompose with formation of HCN at lower temperature than the corresponding potassium salts. The decomposition of <math>K_2[Fe(CN)_4L]$ starts by removal of the ligand L. HCN elimination is followed by a redox reaction with formation of cyanogen in the case of $H[Fe^{III}(CN)_4L]$.

Experimental

The following compounds were used for derivatographic studies:

$$\begin{split} & K_2[\text{Fe}^{II}(\text{CN})_4 bipy] \cdot 4 \text{ H}_2\text{O}, \ & K_2[\text{Fe}^{II}(\text{CN})_4 phen] \cdot 4 \text{ H}_2\text{O}, \\ & H_2[\text{Fe}^{II}(\text{CN})_4 bipy] \cdot 2 \text{ H}_2\text{O}, \ & H_2[\text{Fe}^{II}(\text{CN})_4 phen] \cdot 2 \text{ H}_2\text{O}, \\ & H[\text{Fe}^{III}(\text{CN})_4 bipy] \cdot 2 \text{ H}_2\text{O}, \ & H[\text{Fe}^{III}(\text{CN})_4 phen] \cdot 2 \text{ H}_2\text{O}. \end{split}$$

These complexes were prepared by Schilt's method [1].

The thermal studies were made with a MOM 3427/SK derivatograph, in a Pt crucible with α -Al₂O₃ as reference material and N₂ as inert gas. Other operating conditions: $T_{\rm max}$: 1000°; heating rate: 10°/min;. The sample weight was 100-300 mg. The weight losses observed in the TG curves were referred to 1 mole of investigated complex.

The evolved HCN was determined quantitavely by evolved gas analysis [2]. It was absorbed in NH_4OH solution and was titrated continuously potentiometrically (using a CN-selective electrode) with $AgNO_3$ solution.

The complexes and their solid thermal residues were investigated by IR and Mössbauer spectroscopy. The IR spectra were recorded on a double-beam Carl Zeiss UR-10 spectrophotometer in KBr. For the Mössbauer measurements a ⁵⁷Co source diffused into Pt was used. The absorbent was cooled with liquid nitrogen.

 $H_2[Fe(CN)_4 bipy] \cdot 2 H_2O$ and $H[Fe(CN)_4 bipy] \cdot 2 H_2O$ were decomposed directly in a Varian Mat 111 mass-spectrometer too at different temperatures.

* XIV. A. Hantshmann, J. Salvetter, H. Hennig and B. Mohai, Thermochim. Acta. 25 (1978) 341

Results and discussion

Thermal decomposition of $K_2[Fe^{II}(CN)_4L] \cdot 4 H_2O$

The thermal curves of $K_2[Fe(CN)_4 bipy] \cdot 4 H_2O$ and $K_2[Fe(CN)_4 phen] \cdot 4 H_2O$ are given in Fig. 1. In the first step the crystal water is lost at 130 and 140°, respectively. Thermal decomposition of the complexes starts with elimination of the aromatic ligand. The peak temperature of this process is 275° for the bipyridine complex, and 380° for the phenanthroline complex. The decomposition temperatures of these compounds are lower than those of $K_4[Fe(CN)_6]$, $[Fe(CN)_2 bipy_2]$ and $[Fe(CN)_2 phen_2]$ [3]. This shows that the substitution of two cyanide ligands

of $K_4[Fe(CN)_6]$ by one bipyridine or one phenanthroline produces a compound which has a lower thermal stability than that of $[Fe(CN)_2 bipy_2]$, $[Fe(CN)_2 phen_2]$ or $K_4[Fe(CN)_6]$ (Table 1).

Table 1

Peak temperature of splitting-off of first ligand at thermolysis of $K_4[Fe(CN)_6]$, $K_2[Fe(CN)_4L]$ and $[Fe(CN)_2L_2]$

Complex	T, °C	Ligand split off	Ref.
$\begin{array}{l} K_4[Fe(CN)_6] \\ K_2[Fe(CN)_4phen] \\ K_2[Fe(CN)_4bipy] \\ [Fe(CN)_2phen_2] \\ [Fe(CN)_2bipy_2] \end{array}$	600 300, 380 275	CN phen bipy phen bipy	[3]
	440 315		[3] [3]

It can be observed in the TG and DTG curves of $K_2[Fe(CN)_4bipy]$ that the reaction is accelerated in the final stage of bipyridine loss, while an endothermic effect appears in the DTA curve. This can be attributed to a structural transformation which helps the leaving of the bipyridine (300°). The reaction may be represented by the following equation:

$$2 \operatorname{K}_{2}[\operatorname{Fe}(\operatorname{CN})_{4} bipy] \frac{275, \ 300^{\circ}}{\operatorname{endo}, \ \operatorname{endo}} \rightarrow \operatorname{K}_{2}\operatorname{Fe}[\operatorname{Fe}(\operatorname{CN})_{6}] + 2 \operatorname{KCN} + 2 \operatorname{bipy}.$$
(1)

The thermal curves of $K_2[Fe(CN)_4phen]$ show that the loss of the phenanthroline ligand occurs in two reactions. It can be assumed that these reactions are the following:

 $2 \text{ K}_2[\text{Fe}(\text{CN})_4 phen] \rightarrow \text{K}_2\text{Fe}[\text{Fe}(\text{CN})_6] + 2 \text{ KCN} + 2phen$ (2)

$$3 \text{ K}_2[\text{Fe}(\text{CN})_4 phen] \rightarrow \text{Fe}_2[\text{Fe}(\text{CN})_6] + 6 \text{ KCN} + 3 phen .$$
(3)

 $K_2Fe[Fe(CN)_6]$ decomposes to KCN and $Fe_2[Fe(CN)_6]$ above 500°. The final stages in the TG and DTA curves of the complexes correspond to the decomposition of $Fe_2[Fe(CN)_6]$ and KCN [4].

Thermal decomposition of $H_2[Fe^{II}(CN)_4L] \cdot 2 H_2O$

The two hydrogen-tetracyanoferrate(II) complexes decompose with hydrogen cyanide formation in endothermic reactions. The complex with bipyridine gives off HCN in one step at 140°, while that with phenanthroline evolves HCN in two steps, at 130 and 160° (Fig. 2). The relatively stable decomposition intermediate

Fig. 2. TG, DTG and DTA curves of H₂[Fe(CN)₄L]

J. Thermal Anal. 18, 1980

of H₂[Fe(CN)₄*phen*] is formally a coordinatively non-saturated complex, "H[Fe(CN)₃*phen*]"; but IR and Mössbauer spectroscopic data show that the central atom is six-coordinated. In the IR spectra of H₂[Fe(CN)₄*phen*] v_{CN} can be observed at 2085 cm⁻¹, while "H[Fe(CN)₃*phen*]" has a wide v_{CN} band at 2095 cm⁻¹. This indicates that there is a bridging cyanide ligand in the intermediate. The Mössbauer parameters of these compounds are not essentially different: $\Delta E_{QA} = 0.61$, $\Delta E_{QB} = 0.75$, $\delta_A = -0.25$, $\delta_B = -0.2$ ($A = H_2$ [Fe(CN)₄*phen*], $B = "H[Fe(CN)_3$ *phen*]"). This also shows that the central atom is coordinatively saturated in "H[Fe(CN)₃*phen*]".

Fig. 3. TG, DTG and DTA curves of $H[Fe(CN)_4L]$

The decomposition reactions of the compounds are as follows:

$$H_{2}[Fe(CN)_{4}bipy] \xrightarrow{140^{\circ}} [Fe(CN)_{2}bipy] + 2 HCN$$
(4)

$$H_{2}[Fe(CN)_{4}phen] \xrightarrow{130^{\circ}} 1/n H[Fe(CN)_{2}(CNH)phen]_{n} + HCN$$
(5)

$$\xrightarrow{160^{\circ}}_{\text{endo.}} [Fe(CN)_2 phen] + HCN.$$
(6)

Thermal decomposition of $H[Fe^{III}(CN)_4L] \cdot 2 H_2O$.

The first endothermic reaction can be observed at 140° in the thermal curves of these complexes (Fig. 3). The weight change corresponds to the loss of crystal water, and one mole of HCN or half a mole of (CN)₂. This process is followed by

J. Thermal Anal. 18, 1980

a slow reaction at $160 - 200^{\circ}$, the weight loss again corresponding to the formation of HCN or 0.5 (CN)₂. The fact that cyanogen is formed in the second step has been proved by the following arguments:

a) The $v_{\rm CN}$ of intermediate C (C is the solid residue of H[Fe^{III}(CN)₄bipy] heated to 160°) can be observed at 2130, 2065 and 2025 cm⁻¹, but IR spectra of intermediate D (the solid residue of H[Fe^{III}(CN)₄bipy] heated to 260°) showed $v_{\rm CN}$ only at 2070 and 2030 cm⁻¹. This suggested that the reduction of ferrate(III) to ferrate(II) proceeded between 160 and 260°.

Fig. 4. Mössbauer spectra of $H_2[Fe^{II}(CN)_4 \ bipy]$ and $H[Fe^{III}(CN)_4 \ bipy]$ and their solid ther mal residues

b) The Mössbauer spectra of intermediate C showed the signals of iron(III,) while only iron(II) could be observed in the spectra of D (Fig. 4).

c) Strong HCN and weak (CN)₂ lines could be observed in the mass spectra of $H[Fe(CN)_4 bipy]$. $2 H_2O$ at 155°, while the (CN)₂ lines were more intensive than those of HCN at 165°.

d) HCN formation is always endothermic in the thermal decomposition of any of the studied cyanoferrate acids; at the same time, if the thermal decomposition of paramagnetic cyano complexes which have one unpaired electron starts by cyanogen formation, the reaction is always exothermic [5].

e) The fact that the thermal curves of $H[Fe^{III}(CN)_4L]$ correspond to the TG, DTG and DTA curves of $H_2[Fe^{II}(CN)_4L]$ only after the slow reaction, is circumstantial evidence.

345

 $Fe(CN)_{2}bipy$ decomposes above 300° with formation of *bipy* and $Fe_{2}[Fe(CN)_{6}]$. The endothermic (515°) and exothermic (560°) peaks in the DTA curves indicate the decomposition of $Fe_{2}[Fe(CN)_{6}]$ [4].

The weight loss is smaller than one mole phenantroline in the case of decomposition of $Fe(CN)_{2}$ phen. This shows that the bonds between the central atom and the phenanthroline ligand are very strong, and instead of the splitting-off of the ligand it is cracked. The relatively strong exothermic effect at 680° can be attributed to the decomposition of an iron-nitrile complex.

*

The authors thank I. Ötvös for mass-spectroscopic investigations, and Mrs. Csukás, Mrs. Csiszár and Mrs. Haeffner for experimental assistance.

References

1. A. A. SCHILT, J. Am. Chem. Soc., 82 (1960) 3000.

- 2. J. PAULIK and F. PAULIK, J. Thermal Anal., 3 (1971) 63.
- 3. E. Cs. PORZSOLT, B. MOHAI and M. T. BECK, Magyar Kémiai Folyćirat, 80 (1974) 254.
- 4. B. MOHAI, Acta Chim. Acad. Sci. Hung., 62 (1969) 217.
- 5. B. MOHAI, Magy. Tud. Akad. Kém. Tud. Oszt. Közl., 46 (1976) 163.

ZUSAMMENFASSUNG – Die thermische Zersetzung von K_2 [Fe(CN)₄L] · 4H₂O, H₂[Fe(CN)₄L] und H[Fe(CN)₄L] (L = 1,1'-Dipyridin, 1,10-Phenantrolin) wurde untersucht. Die Versuchsergebnisse zeigten, dass die protonierten Ferrokomplexe unter Bildung von HCN bei niedrigeren Temperaturen zersetzt werden, als die entsprechenden Kaliumsalze. Die Zersetzung von K_2 [Fe(CN)₄L) beginnt durch die Abspaltung des Liganden L. Nach Eliminierung des HCN folgt eine Redox-Reaktion unter Bildung von Dizyan im Falle von H[Fe^{III}(CN)₄L).

Резюме — Изучено термическое разложение $K_2[Fe(CN)_4L] \cdot 4H_2O$, $H_2[Fe(CN)_4L]$ и $H[Fe(CN)_4L]$ где L = 1,1'-бипиридин и 1.10-фенантролин. Экспериментальные результаты показали, что протонированные комплексы двухвалентного железа разлагаются при более низкой температуре, чем соответствующие калиевые соли. Разложение $K_2[Fe(CN)_4L]$ начинается с отщепления лиганда L. В случае $H[Fe^{111}(CN)_4L]$ выделение HCN сопровождается окислительно-восстановительной реакцией с образованием циана.